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Abstract. Phase field models, in particular, the Allen-Cahn type and Cahn-Hilliard
type equations, have been widely used to investigate interfacial dynamic problems.
Designing accurate, efficient, and stable numerical algorithms for solving the phase
field models has been an active field for decades. In this paper, we focus on using
the deep neural network to design an automatic numerical solver for the Allen-Cahn
and Cahn-Hilliard equations by proposing an improved physics informed neural net-
work (PINN). Though the PINN has been embraced to investigate many differential
equation problems, we find a direct application of the PINN in solving phase-field
equations won’t provide accurate solutions in many cases. Thus, we propose various
techniques that add to the approximation power of the PINN. As a major contribu-
tion of this paper, we propose to embrace the adaptive idea in both space and time
and introduce various sampling strategies, such that we are able to improve the effi-
ciency and accuracy of the PINN on solving phase field equations. In addition, the
improved PINN has no restriction on the explicit form of the PDEs, making it applica-
ble to a wider class of PDE problems, and shedding light on numerical approximations
of other PDEs in general.

AMS subject classifications: (or PACs) To be provided by authors
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1 Introduction

Phase field models have been widely embraced in the past few decades to study various
problems in science and engineering, taking the applications in image analysis, material
science, engineering, fluid mechanics, and life science as examples. Among them, two
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fundamental equations are the Allen-Cahn (AC) equation and Cahn-Hilliard (CH) equa-
tion, which are originally introduced to describe the non-conservative and conservative
phase variables in the phase separation process, respectively. Both models are recognized
as gradient flow systems, for which there exists a Lyapunov function, known as the free
energy. From a modeling view, given a specified Lyapunov function, or a free energy
function, the Allen-Cahn type equations can be derived as the L2 gradient flow, and the
Cahn-Hilliard type equations can be derived as the H−1 gradient flow, respectively. This
generality makes the AC and CH type equations extremely useful in modeling many
interfacial or multiphase problems. And many well-known PDE models turn out to be
their special cases.

Given the nonlinearity in phase field equations, along with the stiff terms due to the
small parameters, how to design accurate, efficient, and stable numerical algorithms for
their numerical approximations have been intensively studied in the literature. Here is
some literature that attracts our attention [7, 8, 11, 12, 18, 28, 29, 32, 33]. Interested readers
are encouraged to read them and the references therein for further information. In this
paper, we focus on a new numerical approximation approach by using the deep neural
network. Our major goal is to investigate strategies to improve the capabilities of deep
neural networks on solving phase field models, in particular, the Allen-Cahn equation
and the Cahn-Hilliard equation.

The artificial neural network is named after the fundamental unit of computation in-
side the mammalian brain [20]. Many neurons inside the brain work together to carry
out complex tasks. Similarly, an artificial neural network is composed of multiple con-
nected neurons that work to solve complex tasks. A single neuron in a neural network
can take input from multiple neurons (or nodes). Each input has a parameter called a
weight associated with it. There is also typically a bias term that doesn’t have an in-
put associated with it. The neuron receives the sum of these inputs multiplied by their
weights, along with added bias. This weighted sum then goes through an activation
function that gives the final output for this neuron. In the brain, a neuron usually doesn’t
fire unless the total of its input reaches a certain threshold. The output is either on or
off. In deep learning continuous activation functions are more commonly used [21]. The
sigmoid function can be used as a smoother version of the step function. There are ben-
efits in using differentiable functions like this that will help in ”learning” good weights.
Other useful activation functions used in deep learning include relu, tanh, leaky relu [31]
and swish [25]. A typical feed-forward, fully connected neural network has input going
to and from multiple neurons. The input to the network makes up the input layer. The
neurons of the input layer are then sent to other layers of neuron connections called hid-
den layers, and finally to the last layer, the output layer. See Fig. 1 for a representation of
a simple neural network architecture.

Mathematically, the feed-forward neural network could be defined as compositions
of nonlinear functions. Given an input x∈R

n1 , and denote the output of the l-th layer as
a[l]∈R

nl , which is the input for l+1-th layer. In general, we can define the neural network
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Figure 1: A diagram of a neural network with an input layer, hidden layer, and output layer. Each input gets
sent to each neuron in the hidden layer. The arrows between the neurons all have a weight associated with
them. The bias for each hidden neuron and output neuron are not shown.

as [15]

a[1]= x∈R
n1 ,

a[k]=σ
(

W [k]a[k−1]+b[k]
)

∈R
nk , for k=2,3,··· ,L,

(1.1)

where W [k]∈R
nk×nk−1 and b[k]∈R

nk denote the weights and biases at layer k respectively,
σ denotes the activation function. Essentially neural networks are non-linear mappings
with many parameters. Due to a large number of parameters, they are referred to as a
”black-box” [6]. A loss function is defined to measure the difference between the output
of the network with the known (expected) output. Then, the parameters (the weights
and biases) can be ”learned” by minimizing the loss function. Typically a gradient-based
optimization scheme is applied. The backpropagation algorithm is an efficient way to
find the gradient of this highly dimensional loss function [14]. Stochastic gradient descent
is a popular method that uses smaller subsets of the training data called batches for each
step to achieve better results [4].

In the past few years, there has been intensive research on understanding how deep
neural networks can be adopted to solve and discover differential equations [1–3,9,10,17,
19, 22–24, 26, 30]. For instance, various studies deal with problems of data-driven mod-
eling, especially ones using deep learning to solve differential equations [13]. Others
propose approaches to use existing experiment data to identify the differential equations
themselves in order to model real-world phenomenon [5, 27]. In particular, Raissi et al.
propose the physics informed neural network (PINN) to aid in both the solution of dif-
ferential equations as well as their discovery [24]. The PINN was shown to solve Burgers’
equation and the Schrodinger equation with certain initial conditions accurately. Though
the PINN has been widely appreciated in the community, we found it is not capable of
solving the phase field equations in many cases properly. As a result, we observe that
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some parts of solutions (both spatially and temporally) for the phase field models might
be harder to learn than other parts. These difficult areas could even change over the
course of learning the solution. This is reasonable given the solutions for phase field
models usually have sharp transition layers, and the layers evolve with time. Unfortu-
nately, the original PINN method [24] failed to address these issues, as it involves choos-
ing training data points at the beginning of training randomly across the domain and
fixes them over the entire training process.

This motivates us to conduct the research in this paper. This major goal of this paper
is to investigate strategies to improve the approximation capabilities of physics informed
deep neural networks on solving the phase field equations. We propose strategies to
improve the accuracy and efficiency of PINNs. The major contribution of this paper is to
involve the idea of adaptive sampling data points over the course of training, both with
time and space position in mind. In the rest of this paper, we will introduce our ideas in
detail, and provide several numerical examples to justify our approach further.

2 Improved physics informed neural networks

In this section, we will first give a brief review of the physics informed neural network
(PINN) [24]. Then, we propose several strategies to improve the accuracy and approxi-
mating capability of the PINN.

2.1 Physics informed neural networks

To elucidate the idea of the physics informed neural network (PINN) [24], we use the
following Burgers’ equations as an example, shown as

ut+uux−(0.01/π)uxx =0, x∈ [−1,1], t∈ [0,1],

u(0,x)=−sin(πx),

u(t,−1)=u(t,1)=0.

(2.1)

To solve the Burgers’ equation, the authors [24] introduce two neural networks: the u-
network as

U : (x,t)→U(x,t), (2.2)

and the f -network as

F : (x,t)→Ut(x,t)+U(x,t)Ux(x,t)−(0.01/π)Uxx(x,t). (2.3)

In this case, both the u and f networks have two input neurons, and one output in the

final (output) layer. Given the initial data points
{

(0,xi
u,ui)

}Nu

i=1
and random samples

from the boundary
{

(ti
b,−1),(ti

b,1)
}Nb

i=1
and collocation points

{

(ti
f ,x

i
f )
}N f

i=1
in the interior
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of the domain [−1,1]×[0,1], the loss function for this problem is defined as the mean
squared error of the u-network plus the mean squared error of the f -network, i.e.

MSE=MSEu+MSEb+MSE f , (2.4)

where the three terms are defined as

MSEu =
1

Nu

Nu

∑
i=1

|U(0,xi
u)−ui|2,

MSEb =
1

Nb

Nb

∑
i=1

|U(ti
u,1)|2+|U(ti

u ,−1)|2,

MSE f =
1

N f

N f

∑
i=1

|F(ti
f ,xi

f )|
2,

(2.5)

where Nu, Nb and N f are the number of initial training data, boundary training data,

and interior collocation points respectively. Here (0,xi
u) are the initial condition points

that serve as the inputs to the u-network and ui is the actual solution value of u at those
points (provided in the initial condition). ti

f and xi
f are the collocation points passed

into the f -network. Given the loss function value in (2.4) is small enough, the u-network
approximates the solution well.

2.2 Some strategies to improve the accuracy of the physics informed neural
networks

Though the PINN is shown to be powerful to solve the Burgers’ equation, we find that
a direct application of the PINN on solving the phase field equations would not provide
accurate solutions in many cases. This motivates us to seek some extra techniques to im-
prove the accuracy of the PINN. In this section, we introduce some strategies to improve
the approximation power of the PINN.

2.2.1 Adding weights in the loss function

One simple technique to improve the learning capability of the PINN for solving phase
field models is to add weights in the loss function. This is motivated by the fact that the
phase field equations are dissipative, i.e., not reversible. For example, the Allen-Cahn
equation, as with other reactive diffusion equations, can only be solved in the forward
time direction. In other words, if the PINN fails to learn the solution at time t= t1 well,
there is little hope of learning the solution at a later time t= t2 (with t2> t1) accurately. In
order to put an emphasis on the importance of first learning the solution near t= 0, we
put more weight on MSEu to enforce the u-neural network satisfies the initial condition.
Specifically, we can redefine the loss function in (2.4) as follows:

MSE=C0MSEu+MSEb+MSE f , (2.6)
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where C0 is a big positive constant (that is tunable). Here we chose C0=100 is this paper,
if not specified separately.

2.2.2 Mini-batching strategy to improve convergence

Mini-batching is a technique that has been used in deep learning to improve perfor-
mance. Instead of using the entire data set to calculate the exact direction of the gra-
dient, a subset of the data called a batch or mini-batch is used to evaluate the direction.
Mini-batching has been shown to help avoid less desirable local minimum better than
full-batch gradient descent [16].

We point out that, in [24] and many follow-up papers, the authors do not use a mini-
batching strategy in their training process. In this paper, we investigate the mini-batching
approach and observe the mini-batch approach indeed can facilitate the convergence of
the trained neural network for approximating phase field equations.

2.3 Adaptive strategies to improve the accuracy of the physics informed
neural networks

In this section, we borrow the idea of temporal and spatial adaptivity in classical numeri-
cal methods for solving differential equations, and introduce some adaptive strategies to
improve the accuracy of the physics informed neural networks.

2.3.1 Adaptive sampling of collocation points

Instead of using fixed sample points over the training process, we realize an adaptive
resampling of the collocation points across the domain during the training process is es-
sential for certain situations. In particular, for the phase field equations, there are moving
interfaces that are sharp transitions over space, where finer meshes are desired to capture
the evolution dynamics. Therefore, instead of only sampling points evenly across the do-
main, we periodically stop training and re-evaluate where points are needed most. We
notice there is a correlation between the points that had a larger error in the u-network
(the solution) and the points that had large errors in the f -network. This motivates us to
use the error of f -network as an indicator for resampling.

In practice, we first train the network using the randomly selected points across the
domain. We then choose a different set of sample test points across the domain using the
same Latin hypercube sampling technique and pick a portion of the points that give the
highest error in predicting f . We add this set of points to previous collocation points and
train the network again. This procedure is important, as it prevents us from losing the
accuracy of the solution across the entire domain and, in the meanwhile, helps us to focus
more points to learn the trickier parts better. This process can be iterated a few times if
necessary, by adding a different set of sampled collocation points to the original set and
training again. An illustrative diagram is shown in Fig. 2.
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Figure 2: An illustration of adaptive sampling the collocation points over one iteration. Consider the domain
x ∈ [−1,1] and t ∈ [0,1]. The blue points show the set of randomly sampled collocation points using Latin
hypercube sampling. Training on these points keeps the solution of the equation accurate across the whole
domain. The red points show an example of a set of resampled collocation points sampled after evaluating
the f -prediction network for the highest areas of error. These points help to improve the solution accuracy
over red-point zones, which is usually the interfaces for phase field equations. The combined set of points is
the collocation points used to train the network. The network can repeat this process for multiple re-sampling
iterations. The blue points will stay the same, but the red points may change to focus on other parts of the
domain that are not being learned well.

2.3.2 Adaptive strategies in time

The strategy of adaptive sampling collocation points addresses the moving interface for
the phase field solutions. But for certain phase field problems with sharp transition, even
the PINN with an adaptive sampling of collocation points fails to converge to the actual
solution. Thus, some extra attention is still needed.

In this section, we introduce two adaptive strategies in time to improve the conver-
gence of the PINN. The first time-adaptive approach is similar to the adaptive method
introduced above, in that collocation points in time are strategically chosen to improve
learning. The second time-adaptive method takes a different approach where we create
separate networks on smaller (subsequent) time domains of fixed or adaptive length.

Time-adaptive approach I: adaptive sampling in time. At each time step of this ap-
proach, we require the data points, (initial, boundary, and general collocation both origi-
nal and resampled) to come from within a specified time interval. For instance, if we are
approximating the solution in the time domain [0,1], we start with small time intervals
[0,t1], t1>0, where t1 is close to zero, saying t1=0.1. Then we gradually increase the time
span, i.e., [0,ti], i=1,2,··· ,N, with 0< t1< t2< ···< tN =1, when each time span is learned
well. Eventually, the solution is learned well on the whole domain. This idea is illus-
trated in Fig. 3. In particular, one usually can set a threshold and a maximum training
iterations. Once the loss function value is smaller than the threshold or the training ex-
ceeds the maximum training iterations, the training process marches onto next time step.
In certain cases, if the loss function value is still huge after maximum training iterations,
the time step size shall be reduced.
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Figure 3: This figure illustrates the concept behind the time-adaptive approach I. Consider a time domain [0,1].
The first time step only allows data points to be taken between t∈ [0,0.1]. Once the f -predicted error on the
interval is sufficiently small, collocation points are then chosen on a larger interval [0,0.2], including adaptive
space sampling. Collocation points are still chosen from the earlier time domains to keep what has been learned
there learned well. This is continued until the time interval covers the entire time range for the problem. Note
this is all done on one PINN (in the next time method, multiple networks are created for each time interval).

In addition, this idea of adaptive sampling in time allows the user to designate a
list of time steps. For each time step, collocation points will be sampled from only this
restricted domain. Adaptive space sampling is used within the restricted time interval
to improve learning. The network is then trained for each time interval using adaptive
sampling collocation points. At each new iteration for the time step, the f -predicted error
on that time domain is calculated.

Time-adaptive approach II: adaptive time marching strategy. In the second time-adaptive
approach, we propose to split up the domain of interest into smaller problems. Notice
that in the first time-adaptive approach, we only have a single network that focuses the
collocation points adaptively in time. In the second approach, we create separate net-
works for each time step (interval). For example, if our domain of interest is [0,1], and we
set the time step ∆t=0.1. we train one network to learn the solution on the interval from
[0,0.1]. Once the solution is learned well on this time interval, we train another network
on the interval [0.1,0.2], and so on, until we solve the problem in the entire time domain.

A caveat here is we cannot use the initial condition for the later networks as the given
initial value is only valid for t=0. Instead, we use the prediction from the previous time
step’s network as the initial condition for the current network. We continue doing this
until we have covered the whole time domain of the original problem. The individual
networks can be combined to obtain a solution at any point in the domain of the original
problem. The idea is illustrated in Fig. 4.

We remark that, for the solutions of phase field models, there are sharp transitions in
both time and space, which make them very tough to solve. Utilizing the adaptive ideas
(in both time and space), our improved (adaptive) PINNs improve the accuracy of the
baseline PINN by avoiding certain local minima or saddle points.
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Figure 4: This figure illustrates the concept behind the adaptive time-marching strategy. Here we choose time
step ∆t= 0.1, and individual networks are trained for each time step. Network 2 shares the same initial time
as the last time in Network 1. Once Network 1 has been learned well, its values at t=0.1 can be used as the
initial condition for Network 2. The solution for each individual network can be combined at the end into one
continuous solution that covers the entire domain of the problem. Each network has the same time length but
can be bigger or smaller for parts of the domain that are easier or harder to learn.

3 Numerical results

In this section, we will provide several numerical tests on solving the Allen-Cahn equa-
tion and the Cahn-Hilliard equation with the proposed strategies in the previous section.

First of all, let us recall the Allen-Cahn equation and Cahn-Hilliard equation. Denote
the specific expression of the Ginzburg-Landau free energy

F=
∫

ω

γ1

2
|∇u|2+

γ2

4
(u2−1)dx, (3.1)

where γ1 and γ2 are parameters. If we take the L2 gradient flow, we obtain the Allen-
Cahn equation

∂tu=γ1∆u+γ2(u−u3); (3.2)

and if we take the H−1 gradient flow, we obtain the Cahn-Hilliard equation

∂tu=∆(−γ1∆u+γ2(u
3−u)). (3.3)

Thermodynamically consistent boundary conditions (such as periodic boundary condi-
tions and homogeneous Neumann boundary conditions) and initial values shall be pro-
posed to close the system.

In the rest of this section, we use uniformly random samples from the initial and
boundary points and use a Latin hypercube sampling (LHS) strategy to sample the collo-
cation points in the interior domain. Recall the u-network gives the approximated value
of the solution to the differential equation, and the f -network gives the approximated
residual value of the equation at the given point, which should ideally be zero.
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To test the accuracy of the learned solution, the ‘actual’ solution is obtained by solving
the phase field equations using classical numerical methods with high accuracy. The
accuracy of the trained model is assessed by taking the relative l2-norm of the difference
between the ‘actual’ value u(xi,ti) at those points and the u-network output U(xi,ti) at
those points, i.e.,

Error=

√

∑
N
i=1 |U(xi,ti)−u(xi,ti)|2
√

∑
N
i=1 |u(xi,ti)|2

, (3.4)

given the data points {(xi,ti)}
N
i=1, with N the number of the points.

3.1 Solving the Allen-Cahn equation

We first tested the Allen-Cahn equation of (3.2) with periodic boundary conditions in
one dimension, and chose the parameters: γ1=0.0001 and γ2=5. The specific system is
summarized as follows:

ut−0.0001uxx+5u3−5u=0, x∈ [−1,1], t∈ [0,1],

u(0,x)= x2cos(πx),

u(t,−1)=u(t,1),

ux(t,−1)=ux(t,1).

(3.5)

Note that in [24], the authors did not test this problem with the (continuous) PINN. In-
stead, they solved it using the discrete Runge-Kutta neural network. We thus first test it
with the PINN from [24] as a baseline.

As mentioned in previous section, we introduce two neural networks: the u-network
as

U : (x,t)→U(x,t), (3.6)

and the f -network as

F : (x,t)→Ut(x,t)−0.0001Uxx(x,t)+5U3(x,t)−5U(x,t). (3.7)

And the loss function is defined as

MSE=MSEu+MSE f +MSEb, (3.8)

where MSEu and MSE f are defined the same as (2.5) and the error due to boundary term
is replaced by

MSEb=
1

Nb

Nb

∑
i=1

(

|U(ti
b,xu)−U(ti

b,xl)|
2+|Ux(t

i
b,xu)−Ux(t

i
b,xl)|

2
)

(3.9)

to address the periodic boundary condition. Here Nb is the number of collocation points

used on the boundary, {ti
b}

Nb

i=1 are the time values for those points, xu is the upper bound
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Figure 5: Solutions of the AC equation learned using the Base PINN method. The four plots on the bottom
are the predicted solutions vs. accurate solutions at different times. The baseline PINN approach failed to learn
the solution well.

for x, and xl is the lower bound. For this problem we have xu = 1 and xl =−1 from our
domain. We see that both the expressions inside the absolute values are ideally zero if
the learned solution follows the boundary conditions set by the equation. In this problem
(otherwise specified), we use N f =10,000 collocation points, Nu =200 initial points, Nb =
200 boundary points, and tanh as the activation function. As a general practice in the rest
of this paper, to optimize the loss function, we use Adam optimizer first and then use
the L-BFGS-B optimizer (with respect to the whole training data) to fine-tune the neural
network.

First of all, we tested the baseline PINN approach [24]. Unfortunately, using the base-
line PINN approach alone, we were not able to learn the accurate solution for the Allen-
Cahn equation. The relative l2 error stayed around 0.99. The result is summarized in
Fig. 5, and we observed that the predicted solution at different time steps is not close to
the actual solution.

Then, we added the weights in the loss function, as proposed in Eq. (2.6). With this
strategy, the neural network performed slightly better with a relative l2 error of 0.52, but
the algorithm still failed to converge, as shown in Fig. 6. The network learned the solu-
tion better at points at the starting time domain and near the boundary, but the learned
solutions lost their accuracy in the later time domain, where the collocation points are
sampled randomly.

Then, we used the mini-batching strategy introduced in Section 2.2.2. In this trial, we
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Figure 6: Solutions of the AC equation learned using the PINN method with weights in the loss function. Here
we were still using the baseline PINN approach without changing the collocation point, but we added weights
in the loss function by putting more weight on the initial condition vs. the collocation and boundary conditions.
This results in a slight improvement, especially at times near t= 0. The learned solution is still not accurate
enough.

used 10,000 collocation points, 512 initial points, and 200 boundary points. This network
had 4 hidden layers with 128 neurons per layer, and tanh as the activation function. The
results are summarized in Fig. 7, where we chose mini-batch size as 32 with 100 epochs.
The mini-batching trial performed almost as well as the sampling strategy in the previous
trial. Notice, however, for both these solutions, the learned solutions near t= 1 and x=
0 were not exactly matching the actual solutions. By using time sampling approaches
introduced in Section 2.3.2, the solutions could be learned accurately near both t=1 and
x=0.

Next, we used the adaptive sampling approach introduced in Section 2.3.1. The net-
work architecture was the same as the previous two trials. In this trial, we used 2000
original collocation points, along with 200 resampled collocation points for each itera-
tion. With adaptive sampling collocation points, we obtained a much better solution with
higher accuracy. After about six re-sampling iterations, the solution did not improve sig-
nificantly. The final result is shown in Fig. 8. While the solution was much better, at the
latter time steps, the learned solution didn’t quite match the real solution. The relative l2

error was improved from the others at 2.33e−02.

The l2 errors for various cases are summarized in Table 1. It is important to highlight
also that this improved accuracy for the adaptive approach was obtained with only a
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Figure 7: Solutions of the AC equation learned using the PINN method being trained with mini-batching
approach. The mini-batching approach helped improve the accuracy more than adding weights in the loss
function alone.

Figure 8: Solutions of the AC equation learned using the PINN method with weighted loss function and adaptive
sampling collocation points during the iteration. This improved PINN approach learned an accurate solution
for the AC equation. The focusing of sampling collocation points in the areas with less accuracy allowed the
network to learn the solution better.
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Table 1: Comparison of errors in the learned solutions of the Allen-Cahn equation using various PINN approaches:
(1) the baseline PINN approach; (2) adding weights in the loss function; (3) adoptive resampling collocation
points. The adaptive re-sampling approach produced the best result.

Allen-Cahn PINN Weighted Loss Mini-batching Re-sampling

Relative l2 9.90e-1 5.22e-1 3.25e-2 2.33e-2

Relative l1 9.90e-1 3.25e-1 8.80e-3 6.20e-3

l∞-norm 9.96e-1 1.37 3.37e-1 2.64e-1

fraction of the collocation points that the non-adaptive tests used. The adaptive test used
only 2,000 collocation points while the others were tested with typical 10,000 collocation
points. Thus, the adaptive approach noticeably reduces computational costs. We remark
that the idea of adaptive re-sampling points is essential, as this same iteration scheme was
tried without adding resampled points, and the solution did not converge as expected.

In the first example, we test the improved PINN method on solving the AC equation
with a smooth interface. Next, we further investigate the capability of improved PINN
on solving situations with sharper moving interfaces. In particular, we change the initial
condition for the Allen-Cahn equation with more oscillations and use various values for
the parameters to see how the methods work on different problems.

In the following series of tests, we used the AC equation as below

ut−γ1uxx+γ2u3−γ2u=0, x∈ [−1,1], t∈ [0,1],

u(0,x)= x2sin(2πx),

u(t,−1)=u(t,1),

ux(t,−1)=ux(t,1).

(3.10)

This equation is different from the one previously tested of (3.5) in the initial condition
and that the gamma parameters are not set. Instead of testing one set of parameters, we
varied them, in particular γ2, to see how our method performs on problems of increasing
difficulty. We kept γ1=0.0001 as in the previous problem.

We tested the adaptive re-sampling method using parameters γ2=1,2,3,4. Note when
γ2 increases, the transition interface of the solutions is sharper, which makes it harder to
solve the AC equation numerically. As an agreement, we observed numerically that for
smaller values of γ2, such as γ2=1 and γ2=2, the proposed resampling method in Section
2.3.1 converged in a reasonable number of re-sampling iterations. However, for γ2 = 3,
the resampling approach in Section 2.3.1 failed to converge within a reasonable number
of re-sampling iterations. Note that this happened in fairly early time steps, before t=.35,
and the error propagated and enlarged later on at time t= 1. It could be that a certain
combination of the number of original collocation points with a number of resampled
collocation points would help this solution to converge. However, we did not find one.
This issue got even worse for γ2 = 4. The neural network as unable to learn the larger
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Figure 9: Solution results of the AC (γ2 = 4). For this value of γ2, we see that the solution is not learned all
the way even with adaptive sampling.

curves in this case. As seen in Fig. 9, the sharp transition layer was not well captured by
the learned solution.

To overcome this, we utilized the adaptive in time sampling strategies introduced in
Section 2.3.2. Finally, we saw the results for the trial using adaptive in time sampling
approach I, as shown in Fig. 10. Using this approach, we were able to learn the solution
for the more difficult problem with γ2=4 much better with a relative l2 error of 0.04. As
seen in Fig. 10, the learned solutions are accurate enough across the domain. As has been
observed in other tests, the sharp curve when time is close to 1 is not learned perfectly.

With time sampling approach II, we actually observed that difference to be smaller,
as shown in Fig. 11. For the time sampling approach II on the Allen-Cahn equation, we
saw that at times near t=1, the solution is learned better than it was in the past.

Next, we used the proposed time-adaptive approach to further solve some more com-
plicated problems in higher dimensions. We focused on the classical benchmark problem:
the shrinking of a single drop problem for the Allen-Cahn equation.

For the first benchmark problem, the Allen-Cahn model reads as

∂tφ=λ(ε2∆φ−φ3+φ), X∈Ω, t≥0, (3.11)

We chose the domain Ω :=[0,1]2, the parameters λ=10, ε=0.025. the initial profile for φ
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Figure 10: Solutions of the AC equation (γ2 = 4) solved using the improved PINN with the time-adaptive
approach I and adaptive sampling of collocation points. This equation could not be solved using any of the
methods used in previous trails. With fixed time steps of length ∆t=0.1, this time-adaptive approach I focused
on earlier times and then kept expanding the interval to encompass the whole domain.

Figure 11: Solutions of the AC equation (γ2 = 4) solved using the improved PINN with the time-adaptive
approach II and mini-batch training. With fixed time steps of length ∆t=0.25, this time-adaptive approach II
using multi-neural-networks to encompass the whole domain provides better accuracy.
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(a) Predicted numerical solutions (upred) at t=0,2.5,5,10

(b) Numerical errors (ureal−upred) at t=0,2.5,5 and 10

Figure 12: Numerical approximations of 2D Allen-Cahn benchmark problem using the time-adaptive approach
II. In this example, we chose ∆t= 1, and C0 = 103 the neural network is U : (x,y,t)→U (x,y,t) with 6 hidden
layers, 128 nodes per hidden layer. We chose time step ∆t=0.2. For each neural network, we used 100 epochs
with batch size 32 for the Adam training, followed with a L-BFGS-B optimizer.

was given as

φ(x,y,t=0)= tanh

(

0.35−
√

(x−0.5)2+(y−0.5)2

2ε

)

, (3.12)

and we utilized the time-adaptive approach II to solve this problem for t ∈ [0,10] with
fixed time step size ∆t = 1. The predicted numerical solutions are shown in Fig. 12(a),
where we observed the drop shrink and eventually disappeared. The numerical error, i.e.
the difference between the real solution (which is computed accurate with classical nu-
merical solver) and the predicted solutions of the neural network are shown in Fig. 12(b),
where we observed the error was already very small. In other words, the time-adaptive
approach II provided accurate approximation for this problem.

Similarly, the strategy can be used to solve the 3D benchmark problem as well. In this
case, we chose Ω= [0,1]3, with parameters λ= 10, ε= 0.05. the initial profile for φ was
chosen as

φ(x,y,t=0)= tanh

(

0.35−
√

(x−0.5)2+(y−0.5)2+(z−0.5)2

2ε

)

. (3.13)

Then, the solutions for t∈ [0,1] predicted by the time-adaptive approach II are summa-
rized in Fig. 13, where we observed that the neural network provided accurate predic-
tions.

Then, to further demonstrate the effectiveness of the time-adaptive approach II, we
solved the Allen-Cahn equation in a complex geometry, an L shape domain defined as
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(a) Predicted numerical solutions (upred) at t=0,0.2,0.5,1

(b) Numerical errors (ureal−upred) at t=0,0.2,0.5,1

Figure 13: Numerical approximations of 3D Allen-Cahn benchmark problem using the time-adaptive approach
II. The predicted numerical solutions and their numerical errors at various time steps are shown. In this example,
we chose ∆t=0.5, and C0=103 the neural network is U : (x,y,z,t)→U (x,y,z,t) with 6 hidden layers, 128 nodes
per hidden layer. For each neural network, we used 100 epochs with batch size 32 for the Adam training,
followed with a L-BFGS-B optimizer.

Ω:={0≤x≤1,0≤y≤0.5}∪{0≤x≤0.5,0.5≤y≤1}, with homogeneous Neumann boundary
condition ∂nφ|∂Ω=0. And we chose λ=50, ε=0.025, along with the initial condition

φ(x,y,t=0)= tanh
0.25−

√

(x−0.4)2+(y−0.4)2

2ε
, (x,y)∈Ω. (3.14)

The numerical results are shown in Fig. 14, where we observed the neural network pre-
dicted accurate dynamics of drop shrinking with relatively small errors.

3.2 Solving the Cahn-Hilliard equation

In the previous sub-section, we conducted a detailed study of the improved PINN on
solving the Allen-Cahn equation. It indicated the proposed strategies have significantly
improved the accuracy and convergence of the PINN.

Next we moved onto the Cahn-Hilliard Equation, which has higher order derivatives
and is known to be harder to solve than the Allen-Cahn equation. Mainly, we focused on
the following specific form

ut−(γ2(u
3−u)−γ1uxx)xx =0, x∈ [−1,1], t∈ [0,1],

u(0,x)=−cos(2πx),

u(t,−1)=u(t,1),

ux(t,−1)=ux(t,1),

(3.15)
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(a) Predicted numerical solutions (upred) at t=0,0.2,0.5,1

(b) Numerical errors (ureal−upred) at t=0,0.2,0.5,1

Figure 14: Numerical approximations of the Allen-Cahn equation in a L-shape domain using the time-adaptive
approach II. In this example, the neural network is U : (x,y,z,t)→U (x,y,z,t) with 6 hidden layers, 128 nodes

per hidden layer. We chose time step ∆t=0.1 and C0=103. For each neural network, we used 100 epochs with
batch size 32 for the Adam training, followed with a L-BFGS-B optimizer.

with γ1,γ2 the model parameters. For the following trials we used this equation with
parameters fixed as γ2 = 0.01, and γ1 = 10−6. We tested the same adaptive time method
here as with Allen-Cahn with the regular adjustments to the f -network.

Notice the fact the back-propagation with high order derivatives are extremely ex-
pensive to calculate. To overcome this computational deficiency, we introduced an in-
termediate µ-network. Then, for solving the Cahn-Hilliard equation, we modified the
networks as follows: the (u, µ)-network as

U : (x,t)→ [U(x,t),µ(x,t)], (3.16)

and the f -network as

F : (x,t)→Ut(x,t)−µxx. (3.17)

And the loss function was defined as

MSE=MSEu+MSEb+MSE f , (3.18)
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Figure 15: Solutions of the Cahn-Hilliard equation learned using the improved PINN with sampling collocation
points alone. This figure indicates that training the PINN with sampling collocation points alone is not enough
to achieve convergence for this problem even after many re-sampling iterations.

where the three terms were defined as

MSEu=
1

Nu

Nu

∑
i=1

|U(0,xi
u)−ui|2,

MSEb=
1

Nb

Nb

∑
i=1

|U(ti
b,xi

u)−U(ti
b,xi

l)|
2+|Ux(t

i
b,xi

u)−Ux(t
i
b,xi

l)|
2, (3.19)

MSE f =
1

N f

N f

∑
i=1

|F(ti
f ,xi

f )|
2+|µ(ti

f ,xi
f )−γ2(U(t

i
f ,xi

f )
3−U(ti

f ,xi
f ))+γ1U(t

i
f ,xi

f )xx|
2.

This approach helps reducing the need to take the high order derivatives, and it turns
out to significantly speed up computation and improve accuracy.

This Cahn-Hilliard equation in (3.15) was tested using the approaches of sampling
collocation points in Section 2.3.1 and time sampling strategies in Section 2.3.2. We ob-
served that the trial of sampling collocation points alone does not converge, as the results
illustrated in Fig. 15. The neural network even failed to learn the solution well near t=0,
and the error continued to accumulate throughout the entire domain. Like the trials for
solving the AC equation, this trial used the same network architecture, weighted loss
function, and the number of training data points. Each resampling iterations performed
the Adam optimizer and the L-BFGS-B optimizer. The Adam optimizer learning rate is
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Figure 16: Solutions of the Cahn-Hilliard equation learned using the improved PINN with time-adaptive approach
I in Section 2.3.2 and adaptive re-sampling collocation points in Section 2.3.1. The PINN with sampling
collocation points alone was unable to learn the solution of the Cahn-Hilliard equation accurately. With the
addition of adaptive time sampling, the improved PINN was able to learn an accurate solution with very small
numerical errors.

set to 0.001, and the max iteration was set to 20,000. Even with 20 resampling iterations,
the solution did not converge.

In the meanwhile, when using the time sampling approaches in Section 2.3.2, we ob-
served noticeable improvement. The neural network was able to learn the solution well
near t=0, and by gradually allowing collocation points to be sampled at later times, the
neural network maintained this accuracy across the whole domain. Finally, we present
the results for the trials run on solving the Cahn-Hilliard equation, which was the most
difficult problem to solve thus far, in Fig. 16. From our observation, only methods that
involved adaptive sampling in space and time were able to learn the solutions accurately.
In Fig. 16, it shows the first trial using the time-adaptive approach I on the Cahn-Hilliard
equation, we obtained our best result with a relative l2 error of 9.51e−3.

Next, we studied the benchmark problem for the Cahn-Hilliard model, which reads
as

∂tφ=λ∆(−ε2∆φ+φ3−φ), (x,y)∈Ω, t≥0. (3.20)

In this example, we chose the domain Ω :=[−1,1]2, the parameters λ=1, ε=0.05, and the
initial profile for φ as

φ(x,y,t=0)=max

(

tanh
r−R1

2ε
,tanh

r−R2

2ε

)

, (3.21)
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(a) Predicted numerical solutions (upred) at t=0,0.25,0.5 and 1

(b) Numerical errors (ureal−upred) at t=0,0.25,0.5 and 1

Figure 17: Numerical approximations of the 2D Cahn-Hilliard equation using the time-adaptive approach II. In
this example, the neural network is U : (x,y,t)→ [U (x,y,t),µ(x,y,t)] with 6 hidden layers, 128 nodes per hidden

layer. We chose time step ∆t=0.2 and C0=103. For each neural network, we used 100 epochs with batch size
32 for the Adam training, followed with a L-BFGS-B optimizer.

where r=0.4, R1=
√

(x−0.7r)2+y2, and R2=
√

(x+0.7r)2+y2. This problem was solved
for t∈[0,1] by the time adaptive approach II, and the predicted solutions are summarized
in Fig. 17(a) and the numerical errors (the difference between the real solutions and the
predicted solutions) are summarized in Fig. 17(b). We observed the numerical solutions
predicted by the adaptive approach II can capture the bubble merging accurately.

4 Conclusion

In this paper, we have introduced several strategies to improve the approximating capa-
bility of the physics informed neural network (PINN). Then we used the improved PINN
to solve the phase field equations of increased complexity. Even though we focused on
the problem of solving the Allen-Cahn equation and the Cahn-Hilliard equation, the im-
proved PINN could readily be used to solve other difficult phase field equations as well.

Space sampling opened the door to other ideas of adaptive sampling. Space sampling
uses the f -network predictions to pinpoint areas to focus data points on. Time sampling
uses knowledge of differential equations to chose areas to focus on. We saw how both
the value of the loss function and the values of the f -network predictions could help in
determining if a network has learned a solution well. Using this information can help the
network in making a decision, such as whether to use more collocation points or whether
to focus on a smaller time domain. We also saw merit in both of the time sampling
methods. The time-adaptive approach I proved better than just space sampling alone.
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The time-adaptive approach II took a different angle that has the potential for even higher
accuracy and learning the solution faster. It uses individual networks that can focus on
a smaller problem domain. A potential downside with more difficult equations is that
if the solution gets off on a time interval, all the intervals after that will propagate that
error. It is important to learn the solution well on a time interval before moving on to the
next one. This method may also be helpful when working on problems with larger time
domains.

We have seen how adapting classical mathematical techniques and principles can
help us find useful approaches for designing and training artificial deep neural networks.
Roughly speaking, the best performance is obtained by using a combination of all of the
techniques presented. More simple methods such as mini-batching, and adding weights
in loss function are useful, especially when they are combined with more powerful adap-
tive sampling methods. This research has focused mainly on the problem of solution of
differential equations. The next step of our future work is to test these approaches on the
discovery of differential equations. The same neural network architectures can be used
with the addition of a few more learnable/trainable parameters.
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